Welcome Team KVK

Dr. S. PRABHU KUMAR

Former Director, ICAR ATARI Indian Council of Agricultural Research Zone I (Ludhiana, Punjab) and Zone VIII (Bangalore, Karnataka) E mail: prabhukumar@gmail.com

Few thoughts for Cross Learning

Presentation should highlinght on

The purpose of each activity is to address the problems being faced by farmers in the cluster villages in a problem-solving mode, through an integrated/multidisciplinary approach.

The KVKs should specifically answer

- how much time the KVK Team spends in the cluster villages, and the workload for each specialist
- extent to which problems of the cluster villages are talked in terms of data,
- the extent to which the problems could be redressed through KVK interventions and
- what innovative approaches and strategies KVK plans to adopt to up-scale/out-scale its successful interventions in the past 2-3 years.

Domain of Activities

- Data Generation
- Need Assessment and Prioritization
- Technological Interventions
- On-farm activities at Instructional Farm
- Outreach Activities

Domain of Activities - Data Generation

- Creation of database on the district profile based on the secondary data.
- Base-line data of the cluster villages need to be collected through PRA and other participatory methods and it should specifically reflect on problems related to agriculture and allied sectors.
- Work in a cluster approach with 4-5 villages covering farm families of small and marginal farmers selected preferably from different agroecosystems and continue to work for 3 years with phased out strategy to implement similar activities across the district by moving to new cluster of villages for another 3 year cycle.
- The progress made be documented every year and be compared with the base-line data for assessing the impact of KVK interventions.

Domain of Activities - *Need Assessment and Prioritization*

- Address district-specific needs in agriculture, horticulture, fisheries, livestock, poultry and agro-forestry, by identifying and prioritizing problems.
- Extent, severity, importance and frequency of the problems in the existing farming conditions should be considered as main criteria for identification and prioritization.
- Identify primary and secondary factors / biotic and abiotic causes of each prioritized problem and plan for appropriate interventions.
- Each Scientist (SMS) in KVK should address at least one most relevant issue of the area.

Domain of Activities - Technological Interventions

- Prepare work plan for cluster of villages with well-defined outputs/deliverables. The yearly action plan should aim at tackling each prioritized problem through selecting suitable technologies and technological interventions.
- Identify, document and validate important farmer led innovations.
- Conduct need-based capacity development related activities through specific technology modules and methods/techniques and bring out training manuals in local language.
- Create technology agents through vocational programmes so as to serve as service providers to farmers at the grass-root level.
- Emphasize on activities related to value-chain concept –from producer to consumer.
- Organize skill and entrepreneurship training to rural youth / farmwomen / progressive farmers for higher production of technological products.

Domain of Activities - On-farm activities at Instructional Farm

- Develop quality mother orchard of major fruit crops in the district.
- Establish permanent Technology Demonstration Units, Integrated Farming System models and Technology Cafeteria.
- Produce technological inputs and products like seeds/ planting materials/livestock/bio-products etc., using Revolving Fund, in order to ensure their availability to farmers and other stakeholders.

Domain of Activities - Outreach Activities

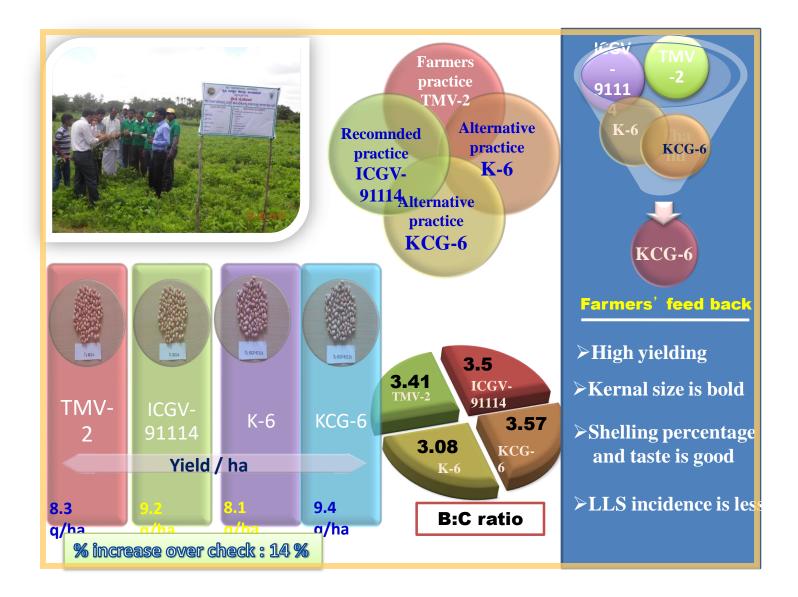
- Plan and execute appropriate off-campus programmes on capacity development.
- Design and implement innovative extension strategies about technology related to prioritized problems.
- Use ICT tools and techniques like e-extension, web-based technology content including modules and capsules, e-farmers, v-KVK and KVK-net for reaching the unreached for knowledge empowerment and technology dissemination.
- Aim for specific targeted programmes like soil, water and plant testing and issuance of soil health cards to farmers in cluster villages.
- Encourage participatory approach for production of seeds and planting materials by farmers at the village level.
- Document significant achievements in the form of case studies / success stories as per the merits of the technology.

MODEL FOR PRESENTATION

Abstract on Technology Assessment

#	Technologies assessed	Amount (Rs.)
1	Assessment of adoptable groundnut varieties for higher yields	30,000
2	Enrichment of rooting media with bio-agents to reduce seedling mortality in tomato nurseries	2,250
3	Standardization of fertilizer requirement for balanced nutrition in pole bean for higher yields	6,290
4	Assessing sulphur application schedule for mulberry	4,350
5	Assessment on Management strategies for late blight in Potato	36,790
6	Efficacy of Different education methods to combat Anemia among adolescent girls	9,000
7	Efficacy of underutilized greens for nutrition security	13,000
8	Effective utilization of household biodegradable waste as nutri compost	8,000
9	Assessment of irrigation systems for better WUE in Mulberry	35,000
	Total	1,44,680

Abstract of Technology Demonstration


#	Technologies Demonstrated	Amount (Rs.)
1	Introduction of KMR-301 in finger millet for early sowing	20,640
2	Introduction of BRG-5 in Redgram for varietal choice	20,880
3	Horsegram var. <i>PHG-9 as a</i> potential pulse in non cropped area	8,000
4	Promotion of fodder cafeteria to mitigate drought by introducing annual and perennial fodder crops	27,250
5	Use of plastic mulch in tomato production to reduce water consumption and weed growth	36,000
6	Use of Ethrel for uniform ripening of Mango fruits	20,500
7	Yield maximization in bottlegourd through potash and boron application	6,250
8	Enhancement of Curd quality in Cauliflower by foliar nutrition of boron and molybdenum	6,100
9	Improving shelf life of Potato through Nutritional and Storage techniques	32,500

#	Title of the FLD	Amount (Rs.)
10	Enhancement of berry size and quality through foliar application of Grape special	6,000
11	A comprehensive approach for pest management in Mango	21,425
12	Cost effective method to combat Late blight of tomato	32,600
13	Integrated Pest and Disease Management strategies in Cabbage	35,750
14	Branding and market linkage for value added Finger millet products	14,000
15	Groundnut Decorticator as a effective tool to reduce drudgery and combat labour demand	12,500
16	Money from honey – through branding and market linkage	16,000
17	Entrepreneurship development in handicrafts using pierced cocoons	7,000
18	Use of improved fruits and vegetable preservator in schools/households	20,000
19	Ecofriendly practices for management of mulberry leaf roller	3,650
20	IFS for sustainable farming	50,000
21	Technology Demonstration- Module I,II & III under NFTD scheme	27,500
	Total	4,24,548

Activities calendar for cluster - 1: Julapalya, Budidagaddapalli, Achaganapalli (Bagepalli Taluk)

Crop/ enterprise	Area (ha)	Baseline yield (q/ha)	Potential yield (q/ha)	Problem (Quantify)	Nature /mode of intervention
Groundnu t	24	8	12.5	Low yielding varieties Imbalanced nutrition and low seed replacement, Labour intensive operation, low productivity of human labour, lack of availability of labour for work	OFT, FLD & Training
IFS	-	-	-	Lack of sustainable income, poor resource recycling and nutritional deficiency	FLD & Training
Potato	16	180	250	25-35 per cent loss of potato in farmer's traditional storage method in 3 months of storage, Severe incidence of late blight of potato leads to very low yield	FLD, OFT & Training
Mulberry	14	55	70	Decline in ground water resources in the district, <i>In-situ</i> water losses in mulberry gardens	OFT & Training
Home Science	-	-	-	Indiscriminate throwing of kitchen and household waste to the roadside, Nonseparation of degradable and non degradable waste	OFT & Training

OFT 1 Assessment of a	adoptable groundnut va	rieties for higher yie	elds 2 nd year	
Crop Prioritized Pr	oblem Details	of technology	Source	
Groundnut Low yielding va Imbalanced nut and low seed replacement	rition TO2: KCG– 6 TO3: Kadri –	TO1: Farmers practice TMV-2UAS (B)TO2: KCG-6UAS (B)TO3: Kadri - 6ANGRAUTO4: ICGV-91114ICRISAT		
Introduction of the end				
Height of plant, no of branches pods/plant, yield and	SMS- Agronomy SMS- SS&AC	Area Replications Cost per Trial Total Cost	1 ha 5 Rs. 6000/- Rs. 30,000/-	
Proposed Village: Kencharlahally	SMS- PP SMS- H.Sc.		KS. 50,000/-	

Technology demonstration from 'Soil to Oil'

Organoleptic evaluation revealed that KCG-6 ranked first in all the sensory characters followed by K6, ICGV-91114 and TMV 2

FLD-14

ಚಿನ್ನಯ

ငာက ဆာဗင္မ Chinmaya Ragi Malt

•

Branding and market linkage for value added Finger millet products

2nd year

Problem: Low income realization due to lack of knowledge on processing, value addition, labeling , packaging and branding

ರಾಗಿ ಚೆಕ್ಕುಲಿ

ವದಾರ್ಥಗಳು: ರಾಗಿಹಿಟ್ಟು. ತೂಳ: 50 ಗ್ರಾಂ ರಥ: ರೂ. ತಯಾರಿಸಿದ ವಿಸಾಂಕ:

ಚಿನ್ನಯ

ငာဂါ သာဗုံ Chinmaya Ragi Malt

•

Source: Food Safety Standards Act-2006

Details of critical Inputs					
Name	Qty.	Cost (Rs.)			
Packaging materials	2 products	2000			
Labels	2 products	5000			
Electronic weighing scale	1	4000			
Sealing machine	3000				
Cost of the demo	14000				

Results

Branding and market linkage for value added Finger millet products

Income generated from the unit

Ragi Products	Production /sale/month	Profit/earnings/month	Earning/month
Ragi Malt	100-120kg	Rs. 10000-12000	
Ragi Chakkuli	40-50kg	Rs. 4000-5000	Rs.20500-25000
Ragi Ladoo	40-50kg	Rs. 4000-5000	
Ragi Hurihittu	25-30kg	Rs.2500-3000	

Parameters: Price, trading net profit and BC ratio and Consumer preference SMS- Home Science SMS- Horticulture SMS- Agronomy

Standardization of fertilizer requirement for balanced nutrition in pole bean for higher yields

Problem : Indiscriminate use of fertilizers

Technology option	Recc.dose/acre	Name of critical input	Cost (Rs)	Total
Farmer practice	120:86:00:30/acre Farmer	Urea-100 kg DAP-150 kg Mop-50 kg	640 4200 350	5540
French bean 62.5:100:75 150%NK & 125% P	37.5:50:45/acre UAS,B	factompos:50 kg Seeds-1kg	350 750	750
French bean 60:80:60 150%NK & 125% P	36:40:30/acre IIHR			Total= 6290
	SMS- S	nembers : S&AC orticulture & Pc		

Standardization of fertilizer requirement for balanced nutrition in pole bean for higher yields

2013-14

application

Т3	Т2	T1	
T1	Т3	T2	
T2	T1	Т3	
Т3	T2	T1	
T1	Т3	T2	
T2	T1	Т3	
Т3	T2	T1	

N

Layout at KVK Farm

14 Yield, plant height and Periodic changes in soil chemical characteristics at pole bean experimental site

		Plant		pН	1		EC (ds/	(m)
		Height	30	60	Harvest	30	60	Harvest
	Yield	(cm)	day	day		days	days	
Treatments	(q/ha)		S	S				
T1 (Urea-375 kg DAP-250kg								
20:20:0:15-500kg)	35.54	181.57	6.00	5.81	6.00	0.08	0.077	0.047
T2 (French bean								
62.5:100:75 kg)	22.81	162.86	5.96	6.05	5.96	0.07	0.074	0.051
T3 (French bean								
60:80:60Kg)	20.61	162.63	6.20	6.12	6.03	0.08	0.084	0.049
SE.m	1.06	1.39	0.05	0.06	0.05	0.01	0.010	0.008
CD	3.25	4.27	0.14	0.17	0.14	0.03	0.031	0.023
	S	NS	NS	NS	NS	NS	NS	NS
Initial values					6.03			0.04

2013-

Periodic nutrient changes in soils at pole bean experimental site						
	%OC			N (Kg/ha)		
Treatments	30 days	60 days	Harvest	30 days	60 days	Harvest
T1	0.223	0.243	0.267	110.0	91.3	79.3
T2	0.234	0.247	0.249	95.6	74.2	66.3
T3	0.246	0.244	0.259	88.4	70.2	62.5
SE.m	0.023	0.017	0.013	4.3	3.3	2.7
CD	0.072	0.052	0.039	13.2	10.1	8.2
	NS	NS	S	NS	NS	S
	0.25%		61.2 kg			
Treatment	P	205 (Kg/	ha)	K2O (Kg/ha)		
S	30 days	60 days	Harvest	30 days	60 days	Harvest
T1	25.50	23.31	18.44	323.21	. 320.11	. 316.00
T2	22.31	19.44	16.00	380.33	340.33	322.13
T3	22.33	18.84	15.79	385.13	339.50	321.83
SE.m	0.61	1.19	1.00	3.36	5 2.44	2.14
CD	1.88	3.67	3.07	10.36	5 7.51	6.59
	S	NS	NS	S S	S S	S
	16.1 kg			322.6 kg		

Major nutrient content in pole bean plant at harvest

	Plant nutrient content at							
	harvest	(%)						
	Ν	N P K						
T1	3.10	0.34	2.19					
T2	2.42	0.25	1.90					
T3	2.36	2.36 0.23 1.86						
SE.m	0.16	0.01	0.05					
CD	0.50	0.50 0.04 0.16						
	NS	NS	S					

Observation

✤Pole bean requires high amount of fertilizers unlike French bean

The pole bean may fix nitrogen in the soil, since there is increase in N content of soil

- The crop respond well for continues application of fertilizer (even weekly) with more yield and plant height
- The crop duration increases with continues application of fertilizer and irrigation with multiple pickings
- Crop responded well for the farmer practices, however scientific recommendation is needed
- The nutrient content of pole bean plant vary with fertilizer dose. However higher amount of NPK content are more in high dose of fertilizers applied.

Activities calendar of SMS (Agronomy)				
Village	Crop/ enterprise	Activity as leader	Other members of the team	Budget proposed (Rs.)
Budidagaddapal li	Groundnu t	OFT on Screening of doptable groundnut varieties for higher yields	SMS-SS & AC, PP, H.Sc	30,500
Nayanahalli	Ragi	FLD on Introduction of KMR- 301 in finger millet for early sowing	SMS-SS & AC, PP, H.Sc	23,140
Nayanahalli	Redgram	FLD on Introduction of BRG- 5 in Redgram for varietal choice	SMS-SS & AC, PP, H.Sc	50,880
Nayanahalli	Horsegra m	Non availability of high yielding varieties and non remunerative & fallowing in case of delay rains	SMS-SS & AC, PP, H.Sc	10,500
Tummanahalli	Fodder cafeteria	FLD on Popularization of fodder cafeteria to mitigate drought condition by introducing annual and perennial fodder crops	SMS-SS & AC, Agril. Extn.	27,250
Budidagaddapal li	IFS	FLD on IFS Demonstration	SMS-SS & AC, Agril. Extn.	50,000

Activities calendar of SMS (Horticulture)

Village	Crop/ enterprise	Activity as leader	Other members of the team	Budget propose d(Rs.)
Shidlaghatta	Nurseries	OFT on Enrichment of rooting media with bio-agents to reduce seedling mortality in tomato nurseries	SMS-PP	2,250
Tummanahal li	Tomato	FLD on Use of plastic mulch in Tomato production to reduce water Consumption and weed growth	SMS-PP, Agron.	36,000
Tummanahal li	Mango	FLD on Use of Ethrel for uniform ripening of Mango fruits	SMS-H.Sc.	14,500
Nayanahalli	Bottle gourd	FLD on Application of potash and Boron to enhance yield in bottlegourd	SMS-SS & AC	6,250

Activities calendar of SMS (SS & AC)

Village	Crop/ enterprise	Activity as leader	Other members of the team	Budget proposed (Rs.)
Tummanahlli	Pole bean	OFT on Standardization of fertilizer requirement for balanced nutrition in pole bean for higher yields	SMS-Hort. Pco	6,290
Nayanahalli	Cauliflower	FLD on Enhancement of Curd quality in Cauliflower by foliar nutrition of boron and molybdenum	SMS-Hort., PP	6,100
Budidagadda palli	Potato	FLD on Improving shelf life of Potato through Nutritional and Storage techniques	SMS-Hort. Pco	18,500
Tummanahalli	Grapes	FLD on Use of Grape special to achieve better berry size and quality	SMS- H.Sc. SMS-Hort.	6,000

Activities calendar of SMS (Plant Protection)

Village	Crop/ enterpris e	Activity as leader	Other members of the team	Budget proposed (Rs.)
Budidagadda palli	Potato	OFT - Assessment on management of late blight in potato	SMS-Hort., PCo	36,790
Tummanahal li	Mango	FLD on Integrated pest and disease management in mango	SMS-Hort., PCo	21,425
Nayanahalli	Tomato	FLD on Integrated Management of late blight of tomato	SMS-Hort., PCo	32,600
Nayanahalli	Cabbage	FLD on Integrated pest and disease management in cabbage	SMS-Hort., PCo	35,750

Activities calendar of SMS (Sericulture)

Village	Crop/ enterprise	Activity as leader	Other members of the team	Budget proposed (Rs.)
Budidagaddapal li	Mulberry	OFT on Assessment of irrigation systems for better WUE in Mulberry	SMS-Agron., SS&AC	35,000
Tummanahalli	Mulberry	FLD on Ecofriendly practices for management of mulberry leaf roller	SMS-Agron, PP	3,650

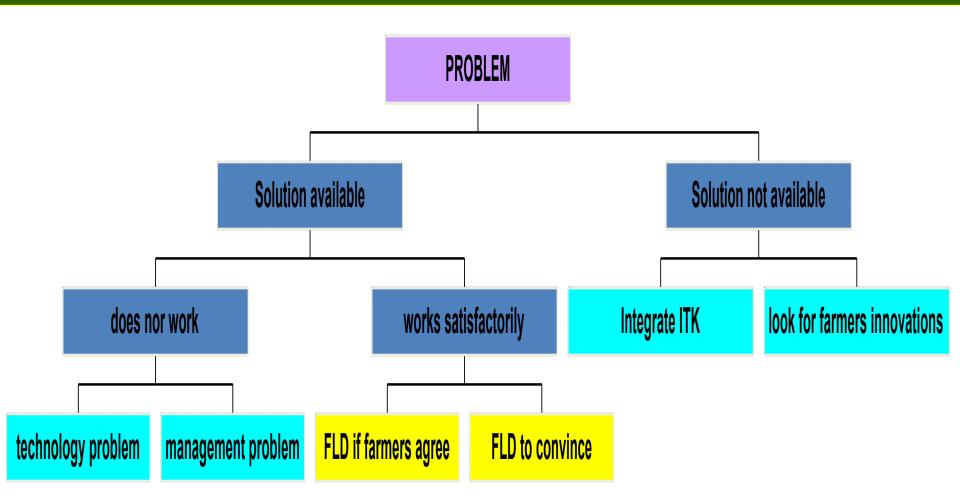
	Activities calendar of SMS (Home Science)				
Village	Crop/ enterprise	se Activity as leader Other members of the team		Budget propose d (Rs.)	
Nayanahalli	Home Science	OFT on Efficacy of Different education methods to combat Anemia among adolescent girls	SMS-Hort, Agril. Extn.	9,000	
Nayanahalli	Home Science	OFT on Efficacy of underutilized greens for nutrition security	SMS-Hort, Agril. Extn.	13,000	
Budidagadda palli	Home Science	OFT on Effective utilization of household biodegradable waste as nutri compost	SMS-Agron, SS&AC	8,000	
Nayanahalli	Finger millet	FLD on Branding and market linkage for value added Finger millet products	SMS-Hort, Agron, Agril. Extn.	14,000	
Budidagadda palli	Groundnu t	FLD on Groundnut Decorticator as a effective tool to reduce drudgery and combat labour demand	SMS-Agron, Hort.	12,500	
Doddabomma nahalli	Bee keeping	FLD on Money from honey – through branding and market linkage	SMS-Hort, Agril. Extn.	16,000	
Nayanahalli	Bio crafts	FLD on Entrepreneurship development in bio crafts using pierced cocoons	SMS- Ag. Extn, PCO	7,000	
Tummanahalli	РНТ	FLD on Use of improved fruits and	SMS-Hort, Agril.	20,000	
		vegetable preservator in school / households	Extn.		

Activities calendar of SMS (Agril. Extension)

Village	Crop/ enterprise	Activity as leader	Other members of the team	Budget propose d (Rs.)
Nayanahalli	Sericultur e	CBA of sericulture farmers	SMS-Agron, Pco	25,000
Tummanahalli	Vegetable s	CBA of vegetable growers	SMS-Hort. PCo	25,000

Four CBAs are already formed

Mango Growers Association - Madanahalli village
 Vegetable Growers Association - Madanahalli village
 Sericulture Farmers Association - Kuruburu village
 Vegetable Growers Association - Kuruburu village


	Activity calendar for Farm Manager- 2014-15					
Blocks /Production units/ Demo Units in the Farm	Crop/ activity in Kharif	Crop/ activity in Rabi/ Summer	Cropping intensity	Approx. Expenditur e (Rs.)	Approx. Revenue (Rs.)	
Block 1: 0.9 ha	KVK, building	, Farmers Hostel, _I	piggery unit, V	/ermicompost	unit	
Block 2: 5.24 ha	Coconut Sapota Guava/ pruning, Ploughing, green manuring/compost application, fertilized application	Coconut Sapota Guava/ Plant protection and harvesting	100 %	30,000	50,000	
Block 2: 7.192 ha	Mango / ploughing, pruning, green manuring, fertilizer application	Plant protection and harvesting	100%	50,000	1,00,000	
Block 3: 4.78 ha	Tamarind/ ploughing	g Harvesting	100 %	20,000	60,000	
Block 4: 3.39ha	Mango and mixed orchard/ ploughing	Plant protection and harvesting	100 %	15,000	20,000	
			TOTAL	1,15,000	2,30,000	

Activity calendar for Farm Manager-2014-15

Demo/ production Units/ labs	Crop/ enterprise	Target for the year	Approximat e Expenditure (Rs.)	Approximat e Revenue (Rs.)	Members of KVK Team involved
IFSD	Ragi/Red gram/ Mulberry/ Vegetable/ fodder	0.8 ha	30,000	60,000	AII SMS
Piggery unit	-	10 nos.	30,000	75,000	SMS- SS&AC and PP
Vermi compost	-	2 ton	2,000	10,000	SMS- SS&AC and Agronomy
Sheep rearing	-	10	35,000	20,000	SMS- SS&AC and Agronomy
Nursery	Tomato/ Drumstick/ mulberry	20,000 No	600	2,000-2,500	SMS- HS and Horticulture
Seed Production	Ragi	10 q	8,000	28,000	SMS-Agronomy and PP

	Details of budget utilization (2013-14) upto 31 January 2014 (in ₹)						
#	Particulars	Sanctioned	Released	Expenditure			
24.1	Recurring Continger	ncies					
24.1.1	Pay & Allowances	49,00,000	49,00,000	50,44,000			
24.1.2	Traveling allowances	95,000	95,000	78,000			
24.1.3	Contingencies						
24.1.4.1	Stationery, telephone, postage and other expenditure on office running, publication of Newsletter and library maintenance	2,00,000	2,00,000	1,97,000			
В	POL, repair of vehicles, tractor and equipments	1,90,000	1,90,000	1,85,000			
С	Meals/refreshment for trainees	70,000	70,000	58,000			
D	Training material	50,000	50,000	30,000			
E	Frontline demonstration except oilseeds and pulses	4,20,000	4,20,000	2,43,000			
F	On farm testing	40,000	40,000	36,000			
G	Training of extension functionaries	15,000	15,000	20,000			
Н	Maintenance of buildings	-	-	-			
	Extension activities	40,000	40,000	34,000			
J	Farmers Field School	20,000	20,000	18,500			
K	Establishment of Soil, Plant & Water Testing Laboratory	-	-	-			
L	Library	5000	5000	4,000			
24.1	Total Recurring (A)	10,50,000	10,50,000	8,25,500			
24.2	Non-Recurring Conting	encies					
24.2.1	Works						
24.2.2	Equipments including SWTL & Furniture						
24.2.3	Vehicle (Four wheeler/Two wheeler, please specify)						
24.2.4	Library						
24.2	Total Non Recurring (B)						
24.3	REVOLVING FUND	CO 45 000	00.45.000	50.04.550			
24.4	GRAND TOTAL (A+B)	60,45,000	60,45,000	52,04,550			

When and Why FLD / OFT

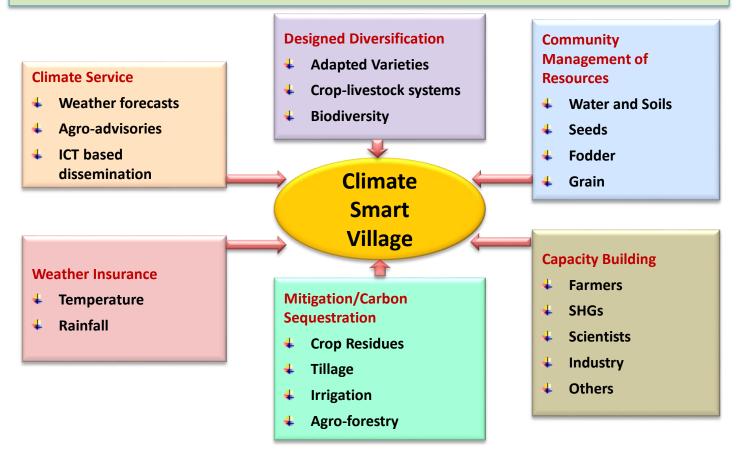
Dimensions to ponder upon.....

Productivity, production and income of the farmers must be considered in totality for pursuing sustainable agriculture

STRATEGIES

Remunerative agriculture

Increasing productivity & production, management of post harvest losses, value chain for increasing farmer's income and ultimately system sustainability. Productivity, production and income of the farmers must be considered in totality for pursuing sustainable agriculture



Climate smart agriculture

Conservation of soil & water, bio-conservation, reducing environmental pollution, climate resilience, and increasing productivity and production of green house/protected cultivation.

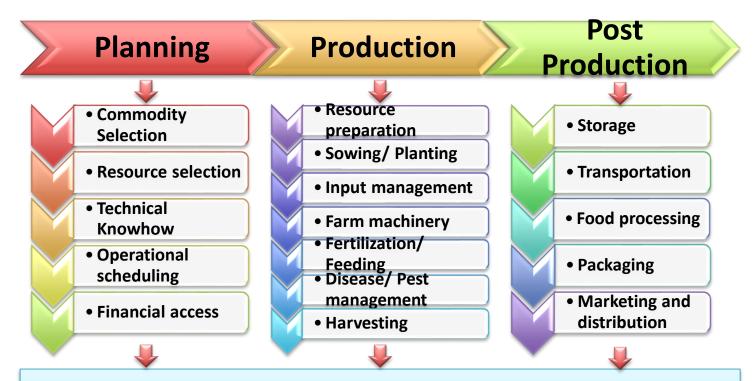
Climate smart agricultural communities

Develop, in partnership with rural communities and other stakeholders, a climate-smart model for agricultural development that includes a range of innovative agricultural risk management strategies

Productivity, production and income of the farmers must be considered in totality for pursuing sustainable agriculture

STRATEGIES

Food and dietary diversification agriculture


Removing malnutrition, nutritional disorders, year round house hold food security, stable and sustainable food supplies, improving livelihood at grass root level through convergence of all schemes for eliminating hunger and poverty.

OUT OF BOX THINKING IN HOME SCIENCE

New Concepts and Approach

- Farming System for Nutrition
- Nutrition Agriculture
- Nutri Farms

ICT Interventions in Agriculture

Decision Support System (DSS), Expert System (ES), Modeling software, e/m-learning, e/m-consulting, Knowledge Management Systems (KMS), Information system, GIS, Remote sensing, networking tools and devices, m2m communication, Sensor Networks

Some New Dimensions for trying......

COCONUT TECHNICIAN TEAM

കോക്കനട്ട് ടെക്നീഷ്യൻ ടീം

A KVK Kannur concept to combat labour shortage

തെങ്ങിന്റെ ശാസ്ത്രീയ പരിപാലനം കരാറടിസ്ഥാനത്തിൽ

WOMEN EMPOWERMENT THROUGH MECHANISATION FOR ACHIEVING FOOD SECURITY

Established a work force 'KRISHI SAHAYI' with 10 women

KVK Malappuram achieved this in collaboration with

Govt. Food security programme
KAU Rice Mission Programme
ATMA
Kudumbasree Mission
District Panchayath
Block Panchayaths
Grama Panchayaths
State Planning Board

FLD on Establishment of a fullfledged machinery bank cum custom hiring unit of machinery for paddy sanctioned by State Planning Board, Govt. of Kerala

This project, as model project is now implementing for 35 panchayats by the Agrl. Department through District Panchayat

Outlay of the project Rs.18,86,000/

KRISHI SAHAYI

Registered Society under KVK guidance

Bio-Pharmacy

A KVK Kannur Concept to Promote Organics in Agriculture

	S.No.	Product	Quantity (Kg/No.)	Amount (Rs.)
	1	Pseudomonas	10112	808960
	2	Trichoderma	2037	142590
BIO-PHARMACY	3	Vermicompost	589	4123
	4	Coir pith Compost	925	5550
	5	Pheromone trap (Mango)	338 No.	33800
	6	Pheromone trap (Vegetable)	1263 No.	189450
	7	Tobacco decotion materials	39.4	9850
	8	Fish Amino Acid	11.1	5550
	9	Egg Amino Acid	0.6	300
	10	Panchagavyam	13	1950
	11	Neem Soap	76.08	19020
		TOTAL		12.21143

The Bio Pharmacy concept of one KVK in Kerala is promoting organics in agriculture with an annual turn over of Rs. 12 lakh plus in providing inputs for organic cultivation can be tried for each taluk under Rytha Samparka Kendra(RSK) in Karnataka

PPP Mode for Fodder Promotion in Tamil Nadu - an Innovative Approach by KVK, Namakkal

PPP Mode for Fodder Promotion in Tamil Nadu

 Public Private Partnership in Fodder Seed Production Started on 02-12-2010 with signing of MoU - Farmers -

KVK - Dept. of Animal Husbandry, Tamil Nadu

Role of Partners

Farmers (Fodder Seeds Producers) Krishi Vigyan Kendra, Namakkal (Co-ordinator) Dept. of Animal Husbandry, Tamil Nadu (Purchaser)

Objective

To develop a standard for fodder seeds production for livestock and to increase the economic standard of the farmers through production and supply of fodder seeds.

Coverage of farmers signed MOU for Fodder Seed/ Setts production in Tamil Nadu

6.	District	No. of farmers	MAP OF TAMIL MOD
1	Namakkal	51	annan A Anna Sana
2	Salem	09	Survey like
3	Trichy	06	Dampat
4	Dharmapuri	05	San Trans 2 Star
5	Erode	04	NLDD Herofischler
6	Vellore	04	Contario
7	Dindigul	02	Institute and Second
8	Krishnagiri	02	Conset 1
9	Cuddalore	02	Maderal Standard
.0	Karur	01	ALALA BURNING SHA
1	Tiruppur	01	1 ASA
2	Theni	01	Daniel B diane Mar LIGEN
3	Villupuram	01	CANNYAC REAL
4	Pudukottai	01	NDAN OCUN Store Capital
	TOTAL	90	© 2008 All rights reserved. Travel Corporation (in Mag nor to scale

- Ninety farmers from 14 districts have signed MoU for fodder seed production.
- Thirty tons of fodder seeds worth Rs.1.3 crores covering 11088 acres of fodder area has been supplied.
- On an average farmers earns Rs.1.0 lakh/acre from fodder seed production excluding the fodder.
- High incidence of seed shattering in COFS -29 reported by KVK, Namakkal to ٠ TNAU breeders and a non-shattering type evolved for seed production

PROCESSING AND VALUE ADDITION - UNDER UTILIZED FRUITS

Absence of unique -locally adoptable processing & preservation technologies

Inaccessibility of quality production, packaging and labeling techniques

□Absence of organized market channel

CARD-KRISHI VIGYAN KENDRA Farm Science Centre, ICAR, Govt. of India Kolabhagom P. O., Pathanamthitta District, Kerala.

TRANSFORMING JACK "THE MOST WASTE FRUIT " TO MONEY SPINNING "WONDER FRUIT"

District area: 2359 ha -16 million fruits Varieties-Koozha: (Bulbs are fibrous, soft textured and highly perishable, less consumer acceptance) Varikka: (Bulbs are less fibrous and firm textured. Larger consumer acceptance as fresh fruit)

Post Harvest Status REMAINS UNDER UTILIZED AND MOSTLY WASTED

CARD-KRISHI VIGYAN KENDRA Farm Science Centre, ICAR, Govt. of India Kolabhagom P. O., Pathanamthitta District, Kerala.

HATCHING "EGGRIPRENEURS" THROUGH POULTRY FARMING-**A CARD-KVK APPROACH**

> EGG PRODUCTION

11.35 CRORE NUMBERS

Pathanamthitta Dist - 2005

TOTAL POPULATION - 3,59,185

CARD-KRISHI VIGYAN KENDRA Farm Science Centre, ICAR, Govt. of India Kolabhagom P. O., Pathanamthitta District, Kerala.

EGG DEMAND 22 CRORE NUMBERS

> **DEFICIT - 10.65** CRORE NUMBERS

TECHNOLOGIES PROMOTED

FARMERS' MALL കർഷക വിപണന മാളിക THE INDU

MANGALORE THE HINDU . MONDAY, DECEMBER 19, 201

KVK's novel value-added initiative

Farmers' Mall to sell quality products sourced from local entrepreneurs

Mohamed Nazeer

KANNUR: It is conceived as a model initiative to sell valueadded farm products from an array of local entrepreneurs, and can be emulated in urban centres for marketing a range of items made from agricultural produce.

The 'Farmers' Mall' set up by the Krishi Vigyan Kendra (KVK) on its premises at Panniyur here is a novel idea to sell the products of enterprises functioning under its paafter ensuring tronage quality.

Established with the support of the Agricultural Technology Management Agency (ATMA), the mall has all the looks of a modern shop, to display and sell branded value-added food products in attractive labelled containers

Funded by: ATMA

Value Addition Enterprises With KVK Patronage

Est: 2004

Jajor

evements

Virgin Coconut Oil o Squash Coconut Chutney ngo Jam o Pickle

> preserve, banana leaf pickle, banana flower pickle, cashew candy honey del and fla-

Banana Halwa

Banana Flower Pickle

Banana Relish

Banana Fig

Cashew Apple Syrup White Pepper Pickles White Pepper Powder

NELCO esmon grane

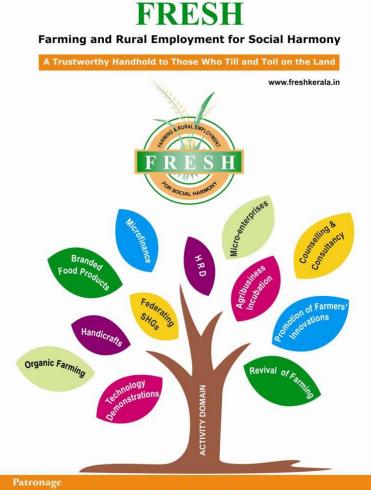
Cashew Apple Syrup Cashew Apple Drink

Cashew Apple Candy White Pepper Powder

White Pepper

Pure Honey

Virgin Coconut Oil Banana Fibre Handicrafts Coconut Chutney


Nakshatra

Jack Fruit Chips

Coco Dew JACK FRUIT CHIP

Fannyar in Kannar on Monaay

apple syrup, cashew apple dul Kareem, head and entrepreneurs to carry out neurs. The KVK's initiatives aramba (banana products); Food Products, Mattannur, Professor of the KVK of Ker- value-addition of farm pro- to promote value-addition KV Fruits Vanivappara and (cashew apple candy); and

Krishi Vigyan Kendra Kannur, Kerala Agricultural University

Value Added Products of Rice FRESH Njvara Rice Flakes, FRESH Nutrich (Niavara Based Health Drink)

Value Added Products of Banana FRESH Banana Halwa, FRESH Udavazhakka, FRESH Banana Pith Preserve, FRESH Banana Flower Pickle & FRESH Banana Leaf Pickle

Value Added Products of Cashew Apple FRESH Cashew Apple Candy, FRESH Cashew Apple Syrup, FRESH Cashew Apple Juice

Value Added Products of Coconut FRESH Virgin Coconut Oil, FRESH Coconut Chips, Fresh Bendiya

Value Added Products of Jack Fruit FRESH Jack Fruit Chips, FRESH Chakka Varatti

Ongoing Projects Value Chain Model for Product Diversification of Banana Establishment of Food Processing Unit

H.R.D

Training for Farmers for Increasing Production and Productivity

Vocational Training for Self Employment Pursuers in Agriculture and Allied Fields The tool employed by the FRESH in bringing about the personality transformation of a trainee into an entrepreneur is Transactional Analysis by Eric Berne

REVIVAL & PROMOTION

OF FARMING

FRESH addresses the problem of

declining area under paddy by

purchasing paddy fallows and

cultivating it with the help of Paddy

PROMOTION OF

MICRO-ENTERPRISES

Mushroom Production, Mushroom

Spawn Production, Bee Keeping,

Ornamental Fish Rearing, Quail

FEDERATING SHGs

Self Help Groups are formed in

different locations involving 10-20

farmers with the main objective of

providing raw materials such as

banana to the Food Processing Unit run by FRESH. The SHGs, thus

provided are federated at the district

Facilities provided by FRESH to

level

the SHGs

Rearing, Poultry, Rabbitry etc

Task Force (PTF)

facilities Training Supply of bio-pesticides on payment basis Arranging insurance coverage Harvesting, procurement & payment at field level

Registration & arranging credit

PROMOTING FARMERS' EXPERIMENTATIONS & INNOVATIONS

Scouting
 Arranging patent registration
 Publicity
 Arranging validation
 Enabling up scaling

TECHNOLOGY DEMONSTRATIONS

FRESH is there in the forefront of agricultural development process with farmers with the latest proven technologies and conducts front line demonstration of such technologies for their swift spread.

COUNSELLING & CONSULTANCY SERVICES

·Psychological counselling for adjustment problems

 Project consultancy for starting new enterprises

COMPLETE HEALTH FOOD IN A DRINK

NJAVARA BASED

حلال

Manufactured and Marketed by: KRISHI VIGYAN KENDRA, KANNUR KERALA AGRICULTURAL UNIVERSITY www.kvkkannur.com

MADE IN INDIA

KVK's Nutrich

Rich

COMPLETE HEALTH FOOD IN A DRINK

NJAVARA BASED

MADE IN INDI سے فی الہند

JULA

Manufactured and Marketed by: KRISHI VIGYAN KENDRA, KANNUR KERALA AGRICULTURAL UNIVERSITY KVK's

Rich

Nutrich

COMPLETE HEALTH FOOD IN A DRINK

NJAVARA BASED

JULA

Manufactured and Marketed by: KRISHI VIGYAN KENDRA, KANNUR KERALA AGRICULTURAL UNIVERSITY

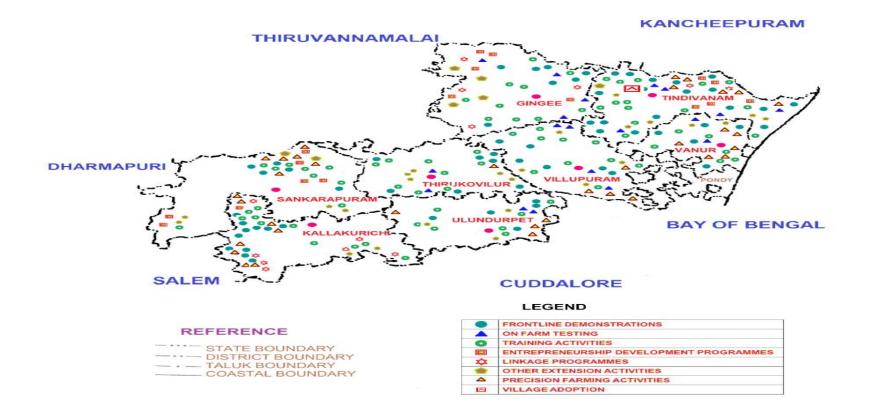
w,kvkkannur.com

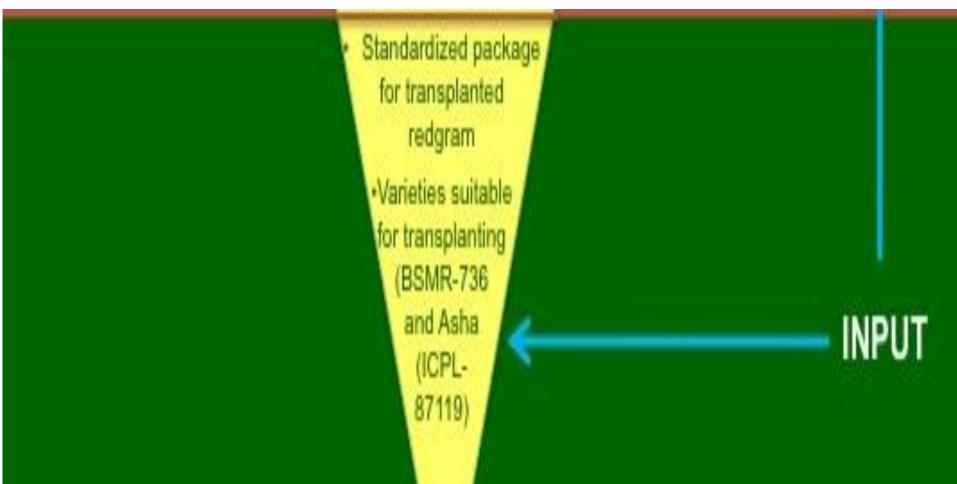
MADE IN INDIA

KVK Products Crosses Arabian Sea

EFFECTIVENESS

ACTIVITY


ACHIEVEMENT


Activity vs Achievement

- Merely projecting the Activity is not the Achievement
- Any Activity should result in Achievement
- Achievement should be Quantified and Qualified.
- Achievement should be in terms of Outcome, Output and Impact
- For achieving this analysing and synthesizing ability to be given utmost importance

To begin with.....

SPREAD OF KVK ACTIVITIES

 Nursery of 21 days old seedlings of redgram varieties viz., BSMR-736 and Asha (ICPL-87119) produced to cover 30 ha (2 lakh seedlings)

Organized 52 demonstrations,
 85 training programmes,
 24 field days,
 23 exhibitions

OUTPUT

- Average yield 34.80 q/ha against 15.50 q/ha in farmers practice
 - 125% yield increased as compared to farmers practice
- 30 days advanced sowing that avoided pod borer occurrence
 - Saved 10 kg seeds per ha
 - Enhanced deep rooting thereby withstanding drought
 - Supplied 200 q of seeds of redgram varieties BSMR-736 and Asha (ICPL-87119)
 - BCR ranged between 5.21 to 7.43
 - Solution for alternate crop for distressed sugarcane growers (net profit Rs.1.14 lakh/ha as compared to Rs.0.60 lakh /ha in sugarcane)

CUTCOME

IMPACT

- Transplanted redgram adopted in 6400 ha (2007-08 to 2009-10)
- 2-3 folds increase productivity and production of redgram was due to transplanting technology in rainfed areas of Bidar district
 - Additional revenue generated Rs.43.96 crore
 - Increased 10% of net area sown of redgram in Bidar was covered by transplanting technology
 - Transplanting technology has spread to 7 other districts of Karnataka (Bagalkot, Gulbarga, Koppal, Yadgir, Raichur, Bijapur and Haveri).
 - Further, the technology also spread to 3 other states viz., Andhra Pradesh, Maharashtra and Tamil Nadu

IMPACT

Transplanted redgram adopted in 6400 ha (2007-08 to 2009-10)
 2-3 folds increase productivity and production of redgram was due to transplanting technology in rainfed areas of Bidar district

Additional revenue generated Rs.43.96 crore

 Increased 10% of net area sown of redgram in Bidar was covered by transplanting technology

Transplanting technology has spread to 7 other districts of Karnataka

(Bagalkot, Gulbarga, Koppal, Yadgir, Raichur, Bijapur and Haveri).

 Further, the technology also spread to 3 other states viz., Andhra Pradesh, Maharashtra and Tamil Nadu

- Average yield 34.80 q/ha against 15.50 q/ha in farmers practice
 - 125% yield increased as compared to farmers practice
- 30 days advanced sowing that avoided pod borer occurrence

Saved 10 kg seeds per ha

Enhanced deep rooting thereby withstanding drought

 Supplied 200 q of seeds of redgram varieties BSMR-736 and Asha (ICPL-87119)

BCR ranged between 5.21 to 7.43

 Solution for alternate crop for distressed sugarcane growers (net profit Rs.1.14 lakh/ha as compared to Rs.0.60 lakh /ha in sugarcane)

> Nursery of 21 days old seedlings of redgram varieties viz., BSMR-736 and Asha (ICPL-87119) produced to cover 30 ha (2 lakh seedlings)

Organized 52 demonstrations,

- 85 training programmes,
 - 24 field days,

23 exhibitions

Standardized package for transplanted redgram

> Varieties suitable for transplanting (BSMR-736 and Asha (ICPL-87119)

OUTCOME

OUTPUT

INPUT

Kindly publish your work...

English Français

New Agriculturist

The Global Forum on Agricultural Research (GFAR) brings together all those working to strengthen and transform agricultural research for development around the world. As part of this role, GFAR is working with New Agriculturist to showcase and raise awareness of important initiatives and their outcomes, to update and inspire others.

Precision farming - sustaining agricultural productivity in India

millet, pulses, sugarcane and cotton are the main crops grown in Madurai District @ Dr C Bavindran

Madurai District of Tamil Nadu, India, where, to overcome poor management practices, Tamil Nadu Agricultural University, in partnership with the World Bank and Krishi Vigyan Kendra (KVK), provided training on 'precision farming' for 3,000 farmers between 2007 and 2010. The poor practices addressed included groundwater depletion through use of surface flood irrigation and ridge and furrow irrigation, escalating costs of inputs and a lack of labour which is a major constraint in Indian agriculture. Precision farming is an approach where inputs, including water and fertilisers

Rice, millet, pulses, sugarcane and cotton are the main crops grown in the

are applied in precise amounts to maximise yields. The aim is to encourage farmers to adopt market-led horticultural production and to promote hi-tech agricultural practices. After clusters of 25-30 farmers had been selected, KVF

evaluated farmers' soil, water supply and pumping equipment before beginning to provide hands-on training

A high-tech community nursery was installed for each cluster, to produce quality planting material, and farmers were aught how to produce high quality planting materials using the pro-tray method, in which hybrid seeds are sown in compost-filled plastic trays. Made of soft plastic, seedlings can be removed from trays without damaging the roots. The nurseries were covered with 50 per cent shade net, which protects seedlings from wind damage, heavy rain, and excess sunlight.

KVK distributed seeds of tomato, brinjal, onion and lablab (bean) to each group in order to establish each nursery, and to conserve water and enable drip fertigation with water soluble fertilisers and urea, a system of drip irrigation was installed in four villages. Drip irrigation equipment supplied to farmers was subsidised, while seed and fertilisers were provided free in the first year. In subsequent years, most of the farmers continued to adopt this technology using their own money.

Overcoming hurdles

nitially, many farmers did not believe that they could double their yields of vegetables while reducing the amount of water they applied to their crops by 40 per cent. But after the first harvest, most changed their minds and 2,200 nectares in Madurai District are now being cultivated using precision farming techniques. Three registered precision arming associations have also been established; involving 60 farmers, the associations meet regularly to discuss narket strategies and interact with buyers and input suppliers. KVK and the other developers hope that the area inder precision farming will continue to expand as awareness is raised through exhibitions and distribution of pamphlets.

New Agriculturist: Research and innovation - Precision farming - sustaining agricultural productivity in India

06/07/13 3:08 PM

stantially increased

Precision farming reduced water use, residues in soil and water, and chemical s average yields compared to traditional cultivation techniques: tomato (from 35 to100 tonnes/ha), onion (11-21 tonnes/ha) and banana (40-120 tonnes/ha). Quality also improved, leading to premium prices at market. Thiru Mitcharaha, from Nadumuthalikkulam, increased his yield of brinjal from 60 tonnes/ha to 200 tonnes/ha, earning US\$5,700 in one year.

Despite the high cost of water soluble fertilisers the total incomes of farmers increased two- to three-fold and their socio-economic status improved. The developers are now calling on the government to reduce the cost of water soluble fertilisers, improve their availability, and look to the improvement of post-installation maintenance of drip irrigation systems.

KVK provided training on precision farming for 3,000 farmers between 2007 and 2010 @ Dr C Ravindran

Due to increasing yields, some markets have become saturated and farmers have faced difficulties in marketing their produce. But this has been overcome by helping farmers to sell their produce at markets further afield. Farmers are also being taken to markets to be shown the importance of grading and sorting at farm level, while buyers are to be invited to demonstration sites to be made aware of the quality of vegetables that are being produced.

Gaining recognition

© Dr C Ravindran

Due to the high water use efficiency of precision farming, and high production of both staple and horticultural crops, various government departments have expressed their willingness to spread the technology throughout Tamil Nadu. The Department of Agriculture has set targets to spread the technology, send farmers for training and provide subsidies. Meanwhile, the Government of Tamil Nadu has begun to offer subsidies, including 15,000 INR (US\$260) per ha for water soluble fertilisers, 5,000 INR (US\$90) for seed, and 44,000 INR (US\$780) for drip fertigation.

According to the developers, one of the biggest challenges is that few farmers recognise the importance of this technology, and instead adopt their own combination of flood irrigation, ridge and furrow irrigation, and transplanting seedlings raised in beds, which leads to 30 per cent mortality

and poor yields. Some farmers are also not adopting precision farming because of the seemingly plentiful availability of water in their region, unaware that groundwater is being depleted. Tamil Nadu Agricultural University and the Indian government, therefore, are aiming to get every farmer to adopt this technology, through raising awareness, training, and subsidies.

Written by: Dr C Ravindran. Assistant Professor (Horticulture), Krishi Vigyan Kendra, Tamil Nadu Agricultural University, and Dr S Kumar, Professor (Horticulture), Tamil Nadu Agricultural University

Date published: July 2012

The New Agriculturist is a WRENmedia production.

This website uses cookies to improve your experience. By continuing to browse the site you are agreeing to our use of cookies.

Accept Read more

Kindly publish your work....

06/07/1

Ensuring Nutritional security by Rural Business Enterpreneurship at Madurai District | EGFAR

Global Forum on Agricultural Research (GFAR)

Ensuring Nutritional security by Rural Business Enterpreneurship at Madurai District

[[]News]

Rediground - when our the drive holded the new development

Ine up the new rop proce is the Rakess Ferrer of Santi Raks, Solis, Son to the publics of andrausis propriet onto the is proved We in the set try point is the basic distance is first thin, the is the points of anisotic points are in a point of the basic distance is the basic distance is the basic distance and the basic distance and the basic distance and the basic distance and the basic distance distance distance and the basic distance dista se offing when in middanes's or densits in promoter. If it events' according in homes, or something agreedows of addition

Bue, determ discribution tassell: their maps offset or superturbs perturbative is the masses bacadedle to suppose their band and extremel membry. The bases that their Ballies we will sense all sensers \$2 maples algebras and massells. The definitions of these membras is made many many the pare of always allower, some and originations and generate and the same the list parties the sourt submits the conducting substitute for a minuture definer dis proces addition? both ideal sharings beaut if for light had if dates the and bilanced more units will profile and her glocomic miter.

Description of how the new development marks and how it is changing real lives

Tex or orna oscinier. En soon die, odscraft aller paper prenn of an annies, por loging godie, et, olait lade fer where is due where is measure, here parents which have here included out controlled a second transmission of the measurement o

Attachment

ensuring nutritional security by rural business enterpreneurship at madural district new.pdf 1.71 MB

Background - what was the drive behind the new development

Rice was the main crop grown in the Madurai District of Tamil Nadu, India. Due to the problem inadequate irrigation water due to ground water depletion, farmers started giving up rice. Millet is highly suitable for promotion as an alternative cross in climate change era for the food and nutritional security. With the intervention of ICAR Krishi Vigyan Kendra (KVK), the activities on millet technologies in terms of location specific sustainable land use systems to convert rice growing areas to millet growing areas was taken. present the production of millets is increased and estimated at all time high levels in this region.

Millets grown at Madurai include finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum) foxtail or Italian millet (Setaria italica). kodos millet (Paspalum scrobiculatum), common o proso millet (Panicum miliaceum), little millet (Panicum sumatrense), and barnyard or sawa mille (Echinochloautilis). But the farmers are not really benefitted of it because of the disrupt rate they de on selling millets to middlemen's or directly to processers. KVK created awareness to farmers on secondary agriculture of millets...Read more

Posted on 19/06/201

waste utilization in Banana Pseudostem | TECA

Food and Agricul Organization of the United Nations

Search the whole site

FAO Home TECA Home Search & Browse Exchange Groups Login FAQ

P M Murugesan a progressive banaria farmers from Metalikal village of Madural district has been participated Farmer day cum workshop on 'Wa

of Agricultural and Horticultural Crops' conducted by Agricultural College and Research Institute, TNAU, Madural during 2007. This workshop has in Agrituation and restaution of Banana pseudostam after the harvest just like Paddy and Sugarcane in Mushroom and Organic compost ma respectively. Disposing of Banana pseudostem after the harvest is the biggest problem faced by the farmers which degrade the soil and alleviate environmental pollution

Keep this a novel idea in mind, a company started at Melakkal Village and registered (Reg. No. 33 024 11 02497) under Micro Level Enterprise in Department of Industries and Commerce, District Industries Centre, Madurai Under the Ministry of Industries and Commerce, during 200

For collection of new materials, extraction of fiber and making value added product 20 rural women were initially employed to takeoff the business rope making machine has been invested with the help of Kinki Vigyan Kandra. TABU, Madural for which he has been awarded Parmer scient from Hon bie Union Minister Stri. Sharad Pawar Ji for Agriculture and Cooperation, New Dehi.

Identification of domestic and international market, leads to expansion of company with the help of loan obtained from State Bank of India and ap 40 rural women's of permanent employment in the village with the capacity to produce 15,000m roperday and make value added products like ba bags etc., besides weaving mat, weaving grill and other products.

Due to the intervention of this company, farmers in and around area got additional income of Rs 5/Pseudo stam, employment opportunities for nur and protection of environment by waste utilization of Pseudo stem, use of eco products which is attemative to plastica

Home > Exchange groups > Farmer Innovation Exchange Group > Discussions >

waste utilization in Banana Pseudostem

p://teca.fao.org/discussion/waste-utilization-banana-pseudostem

To conclude our Approach for Organizational Effectiveness in KVK System should be.....

TALKING WITH THE FARMERS; NOT TALKING ABOUT THE FARMERS BECAUSE THEY ARE OUR PARTNERS; NOT BENEFICIARIES

Thanks to TEAM XIX!

Change is mandatory for extraordinary results.